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A visual speller is a brain–computer interface that empowers
users with limited motor functionality to input text into a computer
by measuring their electroencephalographic responses to visual
stimuli. Most prior research on visual spellers has focused on input
of alphabetic text. Adapting a speller for other types of segmental
or syllabic script is straightforward because such scripts comprise
sufficiently few characters that they may all be displayed to the
user simultaneously. Logographic scripts, such as Chinese hanzi,
however, impose a challenge: How should the thousands of Chinese
characters be displayed to the user? Here, we present a visual
speller, based on Farwell and Donchin’s P300 Speller, for Chinese
character input. The speller uses a novel shape-based method
called the First–Last, or FLAST, method to encode more than
7,000 Chinese characters. Characters are input by selecting two
components, from a set of 56 distinct components, that match the
shape of the target character, followed by selection of the character
itself. At the input speed of one character per 107 s, 24 able-bodied
participants achieved mean online accuracy of 82.8% per compo-
nent selection and 63.5% per character input. At the faster input
speed of one character per 77 s, mean online accuracy was 59.4%
per component selection and 33.3% per character input.

1. INTRODUCTION
A substantial minority of people have motor deficits that

limit or destroy their ability to communicate by conventional
means, that is, by speech, by writing, or by sign language.
Various neuromuscular disorders can cause such severe motor
impairment, including amyotrophic lateral sclerosis, multiple
sclerosis, spinocerebellar ataxia, cerebral palsy, and brain-
stem stroke. Brain–computer interfaces (BCIs) provide affected
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individuals an alternative channel that can augment their abil-
ity to communicate with other people. Typically, the input
signals used to drive BCIs are the fluctuations in electrical
potential elicited by cognitive activity in response to sen-
sory input, measured by electrodes placed on the scalp (i.e.,
electroencephalography [EEG]; e.g., Farwell & Donchin, 1988;
Townsend et al., 2010), or by electrode grids implanted directly
onto the cortical surface of the brain (i.e., electrocorticogra-
phy; e.g., Brunner, Ritaccio, van Erp, Aloise, & Cincotti, 2011;
Leuthardt, Schalk, Wolpaw, Ojemann, & Moran, 2004). Many
BCIs for augmentative communication elicit brain signals using
visual stimuli (e.g., Farwell & Donchin, 1988; Guger et al.,
2009; Jin et al., 2010; Minett, Peng, Zhou, Zheng, & Wang,
2010; Sellers, Krusienski, McFarland, Vaughan, & Wolpaw,
2006; Serby, Yom-Tov, & Inbar, 2005; Townsend et al., 2010),
but effective use has also been made of both auditory stim-
uli (e.g., Furdea et al., 2009; Höhne, Schreuder, Blankertz, &
Tangermann, 2010; Klobassa et al., 2009) and tactile stimuli
(e.g., Brouwer & van Erp, 2010; Brouwer, van Erp, Aloise, &
Cincotti, 2010).

In the P300 Speller, Farwell and Donchin’s (1988) original
visual speller, a 6 × 6 matrix of characters or symbols is dis-
played onscreen to the user. The 12 rows and columns of this
stimulus matrix are briefly intensified, one by one, in pseudo-
random order, forming an oddball sequence (Fabiani, Gratton,
Karis, & Donchin, 1987), while the user attends to the particu-
lar target character that is to be input. Intensification of a row
or column that contains the target tends to elicit a P300 event-
related potential (ERP; Sutton, Braren, Zubin, & John, 1965)
with greater amplitude than that elicited by intensification of
other rows or columns, allowing the user’s intended target char-
acter to be inferred after it has been intensified one or more
times. The original P300 Speller allowed able-bodied users to
select 2.3 characters per minute on average at 95% accuracy,
corresponding to a mean input rate of about 12 bits/minute
(Farwell & Donchin, 1988).

The P300 Speller continues to be the most commonly
used BCI system (Mak et al., 2011). Numerous refine-
ments have been proposed that adjust various features of
the speller, including matrix size (Allison & Pineda, 2003)
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A CHINESE TEXT INPUT BCIF 473

and interstimulus interval (Sellers et al., 2006), background
noise and interference color contrast (Nam, Li, & Johnson,
2010), interface type and screen size (Li, Nam, Shadden, &
Johnson, 2010), stimulus presentation (Frye, Hauser, Townsend,
& Sellers, 2011; Townsend et al., 2010), stimulus motion
(Hong, Guo, Liu, Gao, & Gao, 2009), predictive spelling (Ryan
et al., 2011), and method of data processing (Krusienski et al.,
2006; Serby, Yom-Tov, & Inbar, 2005). The use of the checker-
board paradigm (Townsend et al., 2010), for example, which
intensifies sets of six characters that are located in distinct rows
and columns of an 8 × 9 matrix—rather than entire rows or
columns—allows able-bodied users to input 4.36 characters per
minute at 91.52% accuracy, maintaining a mean practical input
rate of 22.59 bits/minute, almost double that of Farwell and
Donchin’s original speller.

1.1. Nonalphabetic Script
Previous research on the use of visual spellers to augment

communication has focused mostly on languages that are writ-
ten with alphabetic script, including English and German.
Alphabets consist of characters that map to the phonemes
of the corresponding spoken language (Daniels & Bright,
1996), although the mapping is not necessarily one to one.1

Implementation of a visual speller for other alphabetic scripts
(e.g., Greek and Cyrillic) is straightforward because, by appro-
priately adjusting the size of the stimulus matrix, all the
characters in the script can be displayed onscreen to the user
simultaneously. Like alphabetic scripts, other types of segmen-
tal script, particularly abjads (e.g., Arabic) and abugidas (e.g.,
Devanagari), as well as syllabaries (e.g., Japanese kana) also
represent the sounds of the corresponding spoken language
(Daniels & Bright, 1996) and can also be input directly with
a visual speller because they too comprise a small set of charac-
ters that may be composed sequentially to form written words.
For example, the two kana scripts of Japanese, katakana and
hiragana, each comprise 48 characters. In contrast, logographic
scripts—notably Chinese hanzi—consist of large numbers of
characters that represent units of meaning, rather than units of
sound (Wang, 1981). The most commonly used dictionary of
Chinese, Xinhua Zidian (2004), for example, has more than
11,000 entries. It is, therefore, impossible to display simultane-
ously in the stimulus matrix of a visual speller the many thou-
sands of Chinese characters that the user might wish to input.

To resolve this obstacle to implementation of a visual speller
for Chinese text input, we first consider how Chinese text may
be input to a computer via a keyboard. There are two broad
classes of methods for this purpose: sound-based methods,
in which sequences of keystrokes are input to represent the

1The lack of a necessary one-to-one correspondence between
alphabetic characters and phonemes is exemplified by the letters
-ough, which represent various combinations of phonemes, such as

, depending on the English word in
which they appear.

sounds of the spoken language, and shape-based methods,
in which sequences of keystrokes are input to represent the
visual forms of the written language (Fong & Minett, 2012).
Foremost among the sound-based input methods are those using
Hanyu Pinyin (Yin & Felley, 1990), or just Pinyin, the official
Romanization of standard Chinese (i.e., Putonghua, which is
based on the Beijing dialect of Mandarin Chinese; Gu, 2009)
that has been adopted throughout the mainland of China and
elsewhere, both to teach Putonghua pronunciation and to tran-
scribe Chinese words into alphabetic script. Pinyin uses just the
26 letters of the Roman alphabet to represent the entire inven-
tory of Putonghua consonants and vowels.2 A Chinese character
may be typed using Pinyin by entering the sequence of let-
ters that corresponds to its pronunciation. Multiple characters
may have the same pronunciation, necessitating an additional
selection to type the particular character required. For exam-
ple, the Pinyin sequence ‘tian’ represents the pronunciation
of the Chinese characters (“sky”) and (“to append”),
as well as many others. Sound-based input methods using
the Pinyin Romanization may not be suitable for all Chinese
users. According to Ethnologue (Lewis, 2009), the web-based
resource maintained by the Summer Institute of Linguistics,
about 70% of the Chinese population speaks a dialect of
Mandarin, about 80% of whom speak Putonghua, the dialect
upon which Pinyin is based. Of the remaining population, the
majority speak related—but mutually unintelligible—dialects
of Han Chinese (i.e., Sinitic; Van Driem, 2001).

In contrast to sound-based methods, shape-based input sys-
tems specify a set of forms to represent the visual appearance of
the target character. The Chinese character, or sinogram (Wang
& Tsai, 2011), has a hierarchical structure, consisting of one or
more strokes with particular spatial arrangement (Wang, 1981).
For example, the sinogram (“sky”) is made up of four strokes:
two horizontal strokes, one leftward going stroke, and one right-
ward going stroke. The same four strokes may be recombined
with different spatial arrangement to form the distinct char-
acter (“husband”). Certain spatial arrangements of strokes,
which we refer to here as components, reoccur with great fre-
quency in the Chinese lexicon—for example, each of the two
sinograms just stated contains the two components and
(which are themselves both sinograms). Popular shape-based
input methods include wubizixing (or just wubi), used mainly
in the Chinese mainland, and simplified Cangjie, more com-
monly used in Hong Kong. The simplified Cangjie method, for
example, uses a set of 24 basic shapes, each shape designating
a set of stroke patterns with similar spatial arrangements, each
mapped to a key on the keyboard. This method requires two
basic shapes to be selected, followed by selection of a particular

2In addition to consonants and vowels, the Chinese syllable com-
prises lexical tone: the use of distinct pitch patterns to provide lexical
contrast among syllables that are otherwise pronounced similarly.
Pinyin uses a set of optional diacritics to mark the lexical tone of each
syllable.
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474 J. W. MINETT ET AL.

sinogram from among a list of sinograms that match the cho-
sen basic shapes. For example, the sinogram is represented
by the basic shapes and , which are selected by the keys
“m” and “k,” respectively. This same encoding also represents
a number of other sinograms, including (“change”) and
(“government”).

1.2. BCIs for Chinese Text Input
Recently, attempts have been made to develop BCIs for

Chinese text input (Jin et al., 2010; Minett et al., 2010; Wu et al.,
2009), all using shape-based methods rather than sound-based
methods. Although the standard P300 Speller could be adapted
relatively simply to input characters by selecting appropriate
Pinyin sequences, developing a universal system for application
throughout China would be challenging—if not impossible—
because, as noted previously, Pinyin reflects the pronuncia-
tion of Putonghua, based on the Beijing dialect of Mandarin
Chinese, which differs considerably from the pronunciations of
other Han Chinese dialects.

In Jin et al. (2010), the BCI makes use of an existing input
system—the T9 stroke input system (Tegic Communications,
Seattle, WA)—built into a mobile phone. A four-by-four stimu-
lus matrix is used to display a mixture of single strokes, digits,
and controls. The system distinguishes five distinct types of
stroke: horizontal, vertical, leftward going, rightward going or
dot, and hook, as does the system reported in (Wu et al., 2009).
The rows and columns of the stimulus matrix are intensified in
pseudo-random sequence while the user attends to the item to be
selected, as in Farwell and Donchin’s P300 Speller. A sinogram
is input by selecting the sequence of strokes by which that
sinogram may be written. After selection of each stroke, a short-
list of seven sinograms is displayed that matches the current
stroke sequence. The user may then (a) input one of these
seven sinograms by selecting the corresponding digit (1–7),
(b) request that more matching sinograms be displayed by
selecting the digit 8, (c) select an additional stroke, or (d) delete
the previous selection. Using Bayesian linear discriminant anal-
ysis and particle swarm optimization, this system delivered
offline stroke input accuracy ranging from 38.67% up to 100%
by averaging a block of fifteen 2-s trials from each of 11 able-
bodied participants. One participant maintained 100% accuracy
by averaging four trials, achieving an information transfer rate
(Lenhardt, Kaper, & Ritter, 2008) of 40.34 bits/minute, equiv-
alent to about eight stroke selections per minute. Based on the
authors’ estimate that six to seven stroke selections are required
to input a sinogram, the online system may allow slightly better
than one sinogram to be input per minute by the most proficient
users. However, the online performance of this system has yet
to be validated (Jin et al., 2010).

1.3. The Present Study—The FLAST Speller
As just noted, users of the system in (Jin et al., 2010) were

required to make six to seven selections on average in order to

input one sinogram. In online operation, an incorrect selection
in any one of those six to seven selections would necessitate
deletion of the erroneous selection, followed by an additional
attempt to make the intended selection. For users who can main-
tain high selection accuracy (e.g., one of their 11 participants
maintained mean classification accuracy above 90%), there is
no great negative consequence. However, for individuals unable
to maintain high selection accuracy (e.g., two of their 11 par-
ticipants achieved mean classification accuracy below 50%), it
is likely that repeated correction of errors in stroke selection
would greatly increase the time required to input a sinogram
correctly. We have therefore sought to develop an alternative
method for encoding the Chinese lexicon that allows sinograms
to be input in fewer selections.

In this article, we describe and present a performance analy-
sis of a novel visual speller for Chinese text input that requires
at most three selections per sinogram. This online system
uses a set of 56 shape-based components, shown in Figure 1,
extending the 35-component offline system proposed in Minett
et al. (2010), to represent a lexicon of 7,072 distinct tradi-
tional Chinese sinograms.3 Each sinogram is represented by
two components: the first component, representing the pattern
of strokes that would be written first when writing the sinogram,
and the last component, representing the pattern of strokes
that would be written last—we therefore call this speller the
First–Last Speller, or FLAST . For example, the sinogram is
represented by the components and . Of the 56 × 56 pos-
sible pairs of components, only 1,601 pairs encode sinograms.
Of these, 491 pairs each encode a single sinogram. The 56 com-
ponents defined in FLAST were chosen for the express purpose

FIG. 1. The 56 shape-based components of the FLAST speller.

3There are two sets of sinograms with which Chinese may be writ-
ten: traditional characters, used mainly in Hong Kong, Macau, and
Taiwan, and simplified characters, used in the mainland of China and
elsewhere. Simplified characters were introduced in China in 1956 with
the aim of enhancing literacy (Wang, 1973).
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A CHINESE TEXT INPUT BCIF 475

that no pair would encode more than 56 sinograms—the most
numerous pair, and , encodes 41 sinograms, leaving ample
room for future expansion of the lexicon.

The FLAST Speller has two modes of operation: a sinogram
input mode and a component input mode. Sinogram input pro-
ceeds in three stages: (a) selection of the first component,
(b) selection of the last component, and (c) selection of the
sinogram itself. During each stage, an 8 × 8 stimulus matrix
is displayed onscreen, the bottom row of which displays eight
system controls: sleep, delete component, delete sinogram,
delete sentence, copy, paste, toggle sinogram/alphanumeric
input (allowing both sinograms and alphanumeric text to be
input), and enter (allowing sinograms that also appear as com-
ponents in the stimulus matrix, e.g., , meaning “two,” to be
input). During Stages 1 and 2, the first seven rows of the matrix
comprise the 56 components. During Stage 3, these rows com-
prise a set of 56 sinograms, a subset of which is encoded by
the pair of components selected during the first two stages;
the remaining cells of the stimulus matrix are filled by high-
frequency sinograms. The 7,072 sinograms that are encoded
in FLAST are distributed across 140 stimulus matrices, with
some high-frequency sinograms occurring in multiple matrices.
To assist the user to locate target sinograms more easily, the
position of each sinogram in the particular stimulus matrix that
contains it is held constant.

At the beginning of each stage, the entire stimulus matrix
is intensified for a period of time to allow the user time to
locate the target component or sinogram, after which the rows
and columns of the stimulus matrix are intensified in pseudo-
random order. Figure 2 illustrates the FLAST procedure, show-
ing the stimulus matrix at the beginning of Stage 2 after the first
component, , has been selected in Stage 1 (see Figure 2A),
and at the beginning of Stage 3 after the last component, , has
been selected in Stage 2 (see Figure 2B). During sinogram input
mode, component selections are displayed between underline-
characters (e.g., _ _), to distinguish them from sinogram
selections, which are shown without such underlines (e.g.,

). Once a sinogram has been selected during Stage 3,
the component selections are deleted from the screen and the
selected sinogram displayed. During component input mode,
only components may be input, and they are displayed without
underlines (see Figure 2C).

2. METHODS

2.1. Participants
Twenty-four students (12 female, 12 male, Mage =

21.7 years, age range = 19–30 years) from The Chinese
University of Hong Kong, all native Chinese readers, were
paid to participate in this study. All participants were able-
bodied, were naive to BCI use, had normal or corrected-to-
normal vision, and reported no history of neurological illness.
Each participant gave informed consent in compliance with a

protocol approved by the Survey and Behavioural Research
Ethics Committee of The Chinese University of Hong Kong.

2.2. Data Acquisition
Each participant was seated in a quiet, dimly lit room about

90 cm before a LCD monitor that displayed the experimental
stimuli. EEG data were acquired using a 32-channel ActiveTwo
EEG system (BioSemi B.V., Amsterdam, The Netherlands) with
Ag/AgCl active electrodes at positions Fp1, Fp2, AF3, AF4,
Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz, C3, C4, T7, T8,
CP1, CP2, CP5, CP6, Pz, P3, P4, P7, P8, PO3, PO4, Oz, O1,
and O2 (Sharbrough, Lesser, Lüders, Nuwer, & Picton, 1991).
Two additional electrodes, common mode sense and driven right
leg, positioned on either side of vertex at positions C1 and C2,
respectively, were used to provide a feedback loop to drive the
average electrical potential as close as possible to the ampli-
fier reference voltage (BioSemi, 2007). The EEG data were
sampled at a rate of 256 Hz, and a 0.1 Hz to 40 Hz digital
band-pass filter applied. No artifact correction was applied to
deal with eye blinks or eye movements. Stimulus presentation,
data collection, and data processing were all managed by the
general-purpose BCI software BCI2000 (Schalk, McFarland,
Hinterberger, Birbaumer, & Wolpaw, 2004) as follows.

2.3. Experimental Procedure
Each participant completed the experiment in a single ses-

sion that consisted of two parts: calibration followed by online
testing. During calibration, EEG data were elicited from partic-
ipants while the FLAST Speller ran in component input mode
in order to determine the coefficients of a classifier (described
in section 2.5). In each run, participants were required to input
a string of five pseudo-randomly selected components that was
displayed at the top of the screen (see Figure 2C). The current
target component was shown within parentheses to the right of
the component string. After a 10-s pause, during which time
the entire stimulus matrix was intensified—allowing the par-
ticipant time to locate the target component and to blink, if
necessary—the rows and columns of the matrix were intensified
in pseudo-random order. Participants were instructed to attend
to the target throughout this period, keeping a mental count
of the number of times it was intensified (Farwell & Donchin,
1988). Each intensification was 62.5 ms in duration, followed by
a 62.5 ms interstimulus interval during which time no stimulus
was intensified. Thus there were eight intensifications per sec-
ond. For each intensification, an 800-ms segment of EEG data
(comprising 205 samples) was extracted from each channel,
forming a vector of 6,560 features (32 channels × 205 samples)
for use in classification.

In each 2-s trial of 16 intensifications, each row and col-
umn was intensified once. After 10 such trials, requiring a
total duration of 20 s, the component that was identified using
the current classifier was presented onscreen below the com-
ponent string (see Figure 2C). This procedure was repeated
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476 J. W. MINETT ET AL.

(A) (B)

(C)

FIG. 2. Illustration of the FLAST procedure. (A) The component matrix at the beginning of Stage 2, showing the intensification of the entire stimulus matrix while
the participant locates the target component. (B) An example of the sinogram matrix at the beginning of Stage 3. (C) The component matrix during calibration,
showing the intensification of one row of the matrix and the current progress in selecting the target string of five components.

until all components in the string had been presented. After
an initial practice run of five components, six calibration runs
were carried out, each run lasting 21/2 min. After calibration was
complete, each participant performed three additional runs in
component input mode in order to evaluate offline component
selection accuracy, each run requiring five components to be
selected, as in the calibration runs.

The participant was then instructed to use the FLAST Speller
online in sinogram input mode to input four phrases, each con-
sisting of a four-sinogram string, for example, (“of
utmost urgency,” literally burning-eyebrow urgency). Before
each run, the participant was shown the target phrase, together
with the component encodings of each of the four sinograms, on
a handout to which they could refer throughout the run. As sum-
marized in section 1.3 (see also Figures 2A and B), sinogram
input proceeded in three stages. Stages 1 and 2 followed the
same component selection procedure as in the calibration runs
(but without displaying the target components to be input), per-
mitting the first and last component of the target sinogram to be
selected. Upon selection of the last component, Stage 3 com-
menced by displaying for 15 s the intensified sinogram matrix
containing the sinograms that were encoded by the compo-
nent pair identified by the classifier in the previous two stages.

This pause allowed the participant ample time to locate the tar-
get sinogram and to blink, if necessary. If either of the two
component selections was incorrect, the sinogram matrix dis-
played during Stage 3 would not contain the target sinogram.
The participant was not permitted to correct such errors, but
rather was instructed to select the sinogram at the top left cor-
ner of the sinogram matrix. After the 15-s pause, the sinogram
matrix was intensified following the same procedure as for
components.

During both component selection (Stages 1 and 2) and
sinogram selection (Stage 3), the rows and columns of the
matrix were intensified in pseudo-random order for 62.5 ms,
followed by a 62.5-ms interstimulus interval. Each trial of
16 intensifications took 2 s. During input of the first two runs,
10 trials were presented per selection (i.e., 20 target intensifi-
cations and 140 nontarget intensifications). During input of the
second two runs, five trials were presented per selection (i.e.,
10 target intensifications and 70 nontarget intensifications). The
time required to input each sinogram was 107 s during Runs
1 and 2—comprising 60 s of stimulus matrix intensifications
and 47 s of overhead time for interstimulus pauses and target
component/sinogram search—and 77 s during Runs 3 and 4—
comprising 30 s of intensifications and 47 s of overhead. Four
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A CHINESE TEXT INPUT BCIF 477

sinograms were input in each run. Runs 1 and 2 were each
completed in 7 min 8 s, and Runs 3 and 4 in 5 min 8 s.

2.4. Performance Measures
Accuracy was calculated as the percentage of either com-

ponents or sinograms that were correctly input. To input a
sinogram correctly, the participant was required to make three
consecutive correct selections, that is, first component, last com-
ponent, and then the sinogram itself; an error in any one of
these three selections resulted in an incorrect sinogram input.
The number of bits transmitted per selection was calculated
according to the formula (Wolpaw et al., 2000):

B = log2 N + P log2 P + (1 − P) log2

[
1 − P

N − 1

]

where B denotes the number of bits per selection, N is the
total number of possible component or sinogram selections,
and P is the proportion of correct selections. The bit rate in
bits/minute was then obtained by multiplying B by the number
of selections carried out per minute. During component input,
56 distinct components could be selected. During sinogram
input, 7,072 distinct sinograms could be input. In addition to
bit rate, the theoretical bit rate in bits/minute was calculated
by dividing B by the duration in minutes of each selection
excluding the 47-s overhead time during online operation for
interstimulus pauses and target component/sinogram search.

2.5. Classification
The EEG signals elicited by the speller were classified

using stepwise linear discriminant analysis (SWLDA; Draper
& Smith, 1981) following the procedure in (Krusienski, Sellers,
McFarland, Vaughan, & Wolpaw, 2008). SWLDA is an effi-
cient and commonly used method for binary classification (e.g.,
Farwell & Donchin, 1988; Ryan et al., 2011; Townsend et al.,
2010). The binary classification problem consists of determin-
ing a separating hyperplane,

w · x − b = 0, (1)

where x denotes the feature vector (described in section 2.3), w
denotes the feature weights, and b denotes the bias term, with
w and b to be estimated by SWLDA. The row and column of
the stimulus matrix predicted to contain the target were calcu-
lated as those for which the distance of the response from the
hyperplane was greatest (Krusienski et al., 2008). SWLDA esti-
mates w and b iteratively by alternating between forward and
backward stepwise regression to construct a multiple regression
model. In particular, at each forward regression, the statisti-
cally most significant predictor (with p < .1) was added to
the model. At each backward regression, the least significant
predictors (with p > .15) were removed from the model. This
procedure was repeated for 60 iterations, or until no predictors

were either added or removed. For more details of the SWLDA
method, refer to Krusienski and colleagues (Krusienski et al.,
2006; Krusienski et al., 2008).

Calibration of the classifier coefficients was performed
offline in two phases, each requiring the participants to perform
15 component selections. This two-phase calibration process
was used so that the improved accuracy arising from using
the classifier obtained during the first calibration phase would
encourage the participant to focus their attention and seek
to optimize their performance during the second calibration
phase. During both phases, each component selection consisted
of 10 trials, comprising data from 20 target intensifications
and 140 nontarget intensifications. Classifier coefficients were
derived to discriminate the features of the EEG data elicited
across all channels by target intensifications from those elicited
by nontarget intensifications. Upon completion of each phase,
five sets of classifier coefficients were calculated using the
stepwisefit function in Matlab (version R2010A, MathWorks,
Natick, MA), each set obtained by sampling 50% of the EEG
data elicited during that phase. In total, 10 min of EEG data
elicited from 4,800 intensifications per participant were used
for the calibration, of which 600 were target intensifications
and 4,200 were nontarget intensifications. Of the five clas-
sifiers obtained from the first phase of calibration, the one
that provided peak offline accuracy for the smallest number
of trials per selection when applied to EEG data obtained
during the first phase was used as the classifier during the sec-
ond phase of calibration. Of the 10 classifiers obtained from
the two calibration phases, the one that provided peak offline
accuracy for the fewest number of trials per selection when
applied to the EEG data obtained during both phases was used
in the subsequent online testing. The classification accuracies
for each of the ten classifiers obtained during calibration are
shown in Figure 3 for all 24 participants—the figures illus-
trates that the 10 accuracy curves were tightly packed for most
participants.

The classifier’s spatiotemporal filter obtained during
calibration was applied to the EEG data, averaged over a speci-
fied number of trials per selection (either 10 trials during Runs
1 and 2 of online testing or five trials during Runs 3 and 4;
see section 2.3), to determine the classification score for each
row and column of the stimulus matrix. The classification score
for each stimulus was then calculated by summing the scores
for the row and column containing it. The stimulus with the
greatest score was then displayed onscreen (see Figure 2) to the
participant to indicate which component or sinogram had been
input.

3. RESULTS
Figure 4 shows the map of spatial features obtained dur-

ing calibration summed across all 24 participants—the figure
indicates the proportion of participants for whom each of
the 32 channels was included in the respective participant’s
classifier. In total, 10 channels (F7, P7, Pz, PO3, O1, Oz,
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478 J. W. MINETT ET AL.

FIG. 3. Offline classification accuracy for each of the 10 classifiers obtained during calibration for each participant. Note. The accuracy during calibration of the
classifier selected for use in online testing is indicated by the thick solid line; the mean accuracy across all 10 classifiers is indicated by the thin solid line; the
accuracy of each of the other nine classifiers is indicated by a dashed line.

FIG. 4. Map of spatial features summed across all 24 participants. Note.
The map indicates the proportion of participants for whom each electrode
was included in their respective classifiers during online testing (color figure
available online).

O2, PO4, P8, T8) contained spatiotemporal features that were
selected in the classifiers of at least half of the participants.

The offline accuracy of the FLAST Speller for component
input obtained by each of the 24 participants is summarized in
Figure 5.

3.1. Online Accuracy and Bit Rate
Table 1 shows the accuracy and bit rate of the FLAST Speller

for sinogram input obtained during online testing by each of the
24 participants at 10 trials per selection, corresponding to an
input speed of one sinogram per 107 s (i.e., 0.56 sinograms per
minute; Runs 1 and 2). The mean component accuracy at this
selection rate was 82.8%, delivering 12.93 bits/minute. Five
participants (S4, S5, S7, S18, S23) achieved 100% component

accuracy. Participants input sinograms with mean accuracy at
63.5%. The mean bit rate was 4.23 bits/minute, with a the-
oretical bit rate of 7.55 bits per minute (excluding from the
calculation the accumulated overhead of 47 s per sinogram for
interstimulus pauses and visual search time). Five of the 24 par-
ticipants achieved 100% sinogram input accuracy at this input
speed.

Table 2 shows the online accuracy and bit rate obtained by
participants at five trials per selection, corresponding to an input
speed of one sinogram per 77 s (i.e., 0.78 sinograms per minute;
Runs 3 and 4). The mean component accuracy was 59.4%
and the corresponding bit rate was 15.97 bits/minute, slightly
faster than for the 10-intensification selection rate. However,
sinogram accuracy was 33.3% and the corresponding bit rate
was 2.87, lower than for the 10-intensification selection rate.
Only one participant (S17) achieved 100% sinogram accuracy
at this input speed.

3.2. ERP Waveforms
The ERP waveforms elicited by the FLAST Speller are

shown in Figure 6, which displays each participant’s averaged
waveforms (see Figure 6A) as well as the grand-average wave-
form (see Figure 6B) for both targets and nontargets at four
representative channels: Cz, Pz, P7, and P8. For the majority
of participants, there is a clear negative deflection in the parietal
channels P7 and P8, peaking about 200 ms after onset of target
intensification. For most participants, there is no clear positive
deflection after 300 ms (i.e., P300 component), although the
grand-averaged waveform does exhibit a positive deflection in
parietal channels, peaking at about 300 ms, albeit with negative
voltage with respect to baseline, and in the Cz channel, peaking
at about 250 ms.
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A CHINESE TEXT INPUT BCIF 479

FIG. 5. Offline classification accuracy obtained by each participant during component selection after calibration.

TABLE 1
Online Classification Accuracy and Bit Rate Obtained by Each Participant During

Sinogram Input at 10 Trials per Selection (i.e., One Character per 107 s)

Component Selection Sinogram Selection

Participant Accuracy Bit Rate Accuracy Bit Rate Theoretical Bit Rate

S1 87.5% 13.62 50.0% 3.02 5.39
S2 68.8% 9.31 25.0% 1.34 2.39
S3 87.5% 13.62 75.0% 4.92 8.78
S4 100.0% 17.42 100.0% 7.17 12.79
S5 100.0% 17.42 100.0% 7.17 12.79
S6 93.8% 15.33 75.0% 4.92 8.78
S7 100.0% 17.42 100.0% 7.17 12.79
S8 81.3% 12.08 50.0% 3.02 5.39
S9 87.5% 13.62 75.0% 4.92 8.78
S10 68.8% 9.31 12.5% 0.59 1.06
S11 68.8% 9.31 12.5% 0.59 1.06
S12 93.8% 15.33 87.5% 5.97 10.65
S13 50.0% 5.75 12.5% 0.59 1.06
S14 81.3% 12.08 62.5% 3.95 7.04
S15 93.8% 15.33 75.0% 4.92 8.78
S16 25.0% 1.98 0.0% 0.00 0.00
S17 93.8% 15.33 87.5% 5.97 10.65
S18 100.0% 17.42 100.0% 7.17 12.79
S19 87.5% 13.62 75.0% 4.92 8.78
S20 75.0% 10.65 37.5% 2.15 3.84
S21 62.5% 8.05 50.0% 3.02 5.39
S22 93.8% 15.33 87.5% 5.97 10.65
S23 100.0% 17.42 100.0% 7.17 12.79
S24 87.5% 13.62 75.0% 4.92 8.78

M 82.8% 12.93 63.5% 4.23 7.55
SD 18.27% 4.03 32.12% 2.38 4.24
SE 3.73% 0.82 6.56% 0.49 0.87
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TABLE 2
Online Classification Accuracy and Bit Rate Obtained by Each Participant During

Sinogram Input at Five Trials per Selection (i.e., One Character per 77 s)

Component Selection Sinogram Selection

Participant Accuracy Bit Rate Accuracy Bit Rate Theoretical Bit Rate

S1 37.5% 7.44 12.5% 0.82 2.11
S2 50.0% 11.50 0.0% 0.00 0.00
S3 37.5% 7.44 12.5% 0.82 2.11
S4 75.0% 21.30 37.5% 2.99 7.68
S5 87.5% 27.25 75.0% 6.84 17.56
S6 43.8% 9.40 0.0% 0.00 0.00
S7 62.5% 16.11 25.0% 1.86 4.77
S8 31.3% 5.62 12.5% 0.82 2.11
S9 62.5% 16.11 37.5% 2.99 7.68
S10 43.8% 9.40 0.0% 0.00 0.00
S11 37.5% 7.44 12.5% 0.82 2.11
S12 75.0% 21.30 50.0% 4.20 10.79
S13 25.0% 3.96 0.0% 0.00 0.00
S14 75.0% 21.30 50.0% 4.20 10.79
S15 81.3% 24.16 50.0% 4.20 10.79
S16 12.5% 1.23 0.0% 0.00 0.00
S17 100.0% 34.84 100.0% 9.96 25.58
S18 93.8% 30.65 87.5% 8.30 21.29
S19 68.8% 18.63 37.5% 2.99 7.68
S20 50.0% 11.50 37.5% 2.99 7.68
S21 43.8% 9.40 0.0% 0.00 0.00
S22 68.8% 18.63 37.5% 2.99 7.68
S23 87.5% 27.25 62.5% 5.48 14.08
S24 75.0% 21.30 62.5% 5.48 14.08

M 59.4% 15.97 33.3% 2.87 7.36
SD 23.39% 9.03 29.64% 2.81 7.22
SE 4.77% 1.84 6.05% 0.57 1.47

4. DISCUSSION
Accurate sinogram input using the FLAST Speller requires

the user to make three consecutive selections correctly: first
component, last component, and then the sinogram itself.
During sinogram input using 10 trials per selection—that is,
0.56 sinograms per minute—the mean component selection
accuracy that participants achieved was 82.8%. Based on this
figure, the predicted accuracy for sinogram input was (82.8%),3

that is, 56.8%. The mean sinogram accuracy that participants
actually achieved was 63.5%, similar to the predicted accu-
racy. We infer that participants were able to locate and attend to
sinogram targets with similar ease as component targets. Using
five trials per selection—that is, 0.78 sinograms per minute—
sinogram input accuracy was only 33.3%, too low on average
for effective online use, although five participants maintained
sinogram input accuracy greater than 50% at this input speed.

To consider ways to enhance performance, it is informa-
tive to examine the component selection and sinogram input
bit rates. Participants achieved 12.93 bits/per minute while
selecting component targets. However, when calculated in
terms of correct sinogram inputs, the mean bit rate was only
4.23 bits/minute. This reduction in bit rate had two main causes.
First, the time required to input one sinogram included an
overhead period of 47 s—for interstimulus pauses and visual
search time—during which time no EEG data were processed.
Neglecting this overhead period from the calculation of bit rate
generated 7.55 bits/minute for the 10-intensification selection
rate and 7.36 bits/minute for the five-intensification selec-
tion rate. Second, the three-stage FLAST procedure potentially
allows 56 × 56 × 56 (i.e., 175,616) distinct sinograms—that is,
12.07 bits of information—to be input. In practice, however, the
system allows only 7,072 distinct sinograms—that is, 8.86 bits
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A CHINESE TEXT INPUT BCIF 481

FIG. 6. (A) ERP waveforms elicited from each participant by both target (thick line) and nontarget (thin line) intensifications at four electrode locations: Cz, Pz, P7,
and P8. (Amplitude units are µV; time units are ms.) (B) Grand-averaged ERP waveform elicited by both target (thick line) and nontarget (thin line) intensifications
for all 24 participants at four electrode locations: Cz, Pz, P7, and P8.

of information—to be input, resulting in a “loss” of 3.21 bits
per sinogram input.

This bottleneck on performance may be alleviated by revis-
ing the stimulus presentation in three ways4: First, by reducing
the number of components, the stimulus matrix size may be

4Performance improvement could also be sought by revising the
classification algorithm, by additional training of the participants, and
so on. The focus in this article is to present the FLAST speller for

reduced, resulting in faster trials and, potentially, more accu-
rate selections, although more selections must consequently be
made before a sinogram can be input. If the components are
defined such that only component combinations that encode
sinograms are available to the user, a higher resultant bit rate
may be maintained. The five-stroke methods (Jin et al., 2010;

Chinese text input and to assess its performance based on the use of a
standard classification algorithm, SWLDA.
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Wu et al., 2009) take this approach. Although suitable for users
who achieve high accuracy, these systems may be unusable
in practice for users with low selection accuracy who may be
required to frequently correct the six to seven selections nec-
essary to input one sinogram. In the future, a comparison of
online sinogram input accuracy and speed may be performed
for the FLAST method and the five-stroke methods to determine
under what circumstances each approach achieves the better
performance. Second, by reducing the overhead duration—both
the time allocated to locate target components and sinograms,
and the interstimulus intervals—sinograms may be input more
rapidly. We anticipate that the overhead may be significantly
reduced below the present 47 s with minimal reduction in per-
formance. Third, the mean number of selections required to
input sinograms can be reduced by incorporating character pre-
diction into the speller (Ryan et al., 2011). For the sinogram, this
can be achieved on three levels: at the word level, by assess-
ing which words commonly co-occur to form phrases; at the
sinogram level, by predicting the second sinogram of a two-
sinogram word after input of the first sinogram; and at the
component level, by predicting which sinograms are most likely
to match a single selected component. Implementation of both
overhead reduction and character prediction is in progress, and
is expected to enhance both the online accuracy and input speed
of the FLAST Speller.

The majority of visual spellers use the P300 response as the
primary source of spatiotemporal features by which to conduct
classification. However, as introduced in the results presented
earlier, no clear P300 component was elicited from participants
in response to target intensification in the FLAST procedure.
Instead, an apparent N200 component, peaking about 200 ms
after target onset at both left- and right-hemisphere parietal
sites, was observed. The N-200 Speller (Hong et al., 2009) has
made use of the N200 visual motion response (Kuba & Kubova,
1992), elicited by the use of motion stimuli, for accurate alpha-
betic text input. In the present work, however, the source of the
apparent N200 cannot be attributed to a visual motion response
because no motion stimuli were used. Additional experiments
are necessary to investigate the causes and implications of the
weak P300 and strong apparent N200 response in FLAST.

Validation of the performance of the system by users with
neuromuscular disability also remains a necessary step to be
carried out. Nevertheless, the results reported here demonstrate
that online input of Chinese text from a large lexicon using the
FLAST Speller is feasible.
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